참조
https://docs.ultralytics.com/modes/predict/#sources
weights=ROOT / 'yolov5s.pt', # model path or triton URL
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
'Python' 카테고리의 다른 글
yolo8 & python 3.10 이용한 객체 인식 #6 사람만 찾아서 바운딩 박스 컬러 변경 (0) | 2023.05.16 |
---|---|
yolo8 & python 3.10 이용한 객체 인식 #4 CCTV 객체 인식하기 (RTSP 지원 CCTV) (0) | 2023.05.12 |
yolo8 & python 3.10 이용한 객체 인식 #3 사람만 감지 (0) | 2023.05.12 |
yolo8 & python 3.10 이용한 객체 인식 #3 커스텀 감지(포트홀) (0) | 2023.05.11 |
yolo8 & python 3.10 이용한 객체 인식 #2 웹캠 사용하기 (1) | 2023.05.10 |